Matrix completion via max-norm constrained optimization
نویسندگان
چکیده
منابع مشابه
Matrix completion via max-norm constrained optimization
This paper studies matrix completion under a general sampling model using the max-norm as a convex relaxation for the rank of the matrix. The optimal rate of convergence is established for the Frobenius norm loss. It is shown that the max-norm constrained minimization method is rate-optimal and it yields a more stable approximate recovery guarantee, with respect to the sampling distributions, t...
متن کاملSocial Trust Prediction via Max-norm Constrained 1-bit Matrix Completion
Social trust prediction addresses the significant problem of exploring interactions among users in social networks. Naturally, this problem can be formulated in the matrix completion framework, with each entry indicating the trustness or distrustness. However, there are two challenges for the social trust problem: 1) the observed data are with sign (1-bit) measurements; 2) they are typically sa...
متن کاملClustering using Max-norm Constrained Optimization
We suggest using the max-norm as a convex surrogate constraint for clustering. We show how this yields a better exact cluster recovery guarantee than previously suggested nuclear-norm relaxation, and study the effectiveness of our method, and other related convex relaxations, compared to other clustering approaches.
متن کاملA max-norm constrained minimization approach to 1-bit matrix completion
We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm constrained maximum likelihood estimate is introduced and studied. The rate of convergence for the estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound under the ge...
متن کاملMax-norm optimization for robust matrix recovery
This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions. This method significantly relaxes the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2016
ISSN: 1935-7524
DOI: 10.1214/16-ejs1147